

RAIL TRAFFIC MANAGEMENT

Lisbon · March 23, 2018

Luís Brás Coelho Head of Rail Traffic Management

ÍNDICE

01 PORTUGUESE RAIL NETWORK

OPERATIONAL COMMAND CENTER (CCO)

02 EVOLUTION OF RAIL TRAFFIC MANAGEMENT IN PORTUGAL

07 LISBON CCO

2004 - WHAT TO DO ?

04 STRATEGIC PLAN

05 CCO - CONCEPTUAL MODEL

PORTUGUESE RAIL NETWORK

PORTUGUESE RAIL NETWORK

LINES IN OPERATION 2.544 km

CLOSED LINES 1.075 km

2000 Trains / day	37.000.000 Tk / year
✓ 5 % IC & Alfa	√21 % IC & Alfa
√22 % Regional	√28 % Regional
√63 % Suburban	√35 % Suburban
√10 % Freight	√16 % Freight

Railway Network Management

SIGNALING and TELECOMMUNICATIONS

Electronic and electric signaling

Mechanical Signaling

1 740 km [*]

806 km

LEVEL CROSSINGS
With active protection

435

877

442

Without active protection

SECURITY SYSTEMS
COMMAND AND CONTROL

Convel Ericab 700 1 740 km [*]

Radio Solo-Comboio (RSC)

1 631 km [*]

BRIDGES	TUNNEL	STATIONS/ STOPS	ELECTRICAL SUBSTATIONS	
2379	124	924	28	TOTAL
2128	90	564	28	Exploitation

[*] 90% of all trains

EVOLUTION OF RAIL TRAFFIC MANAGEMENT IN PORTUGAL

EVOLUTION OF RAIL TRAFFIC MANAGEMENT IN PORTUGAL

Traditional Systems

Telephonic control

Electrical signalling

Electronic Signalling/ATC installed in the 90's

Centralized Traffic Control

CTC - installed locally

For the first time we can command traffic from a Command Centre and not just control

CTC in 2004

3 electronic signaling technologies:

- SSI, supplied by Dimetronic
- PIPC, supplied by Alcatel
- ESTW, supplied by Alcatel

PAMPILHOSA CTC
ENTRONCAMENTO CTC
ORIENTE CTC
CAMPOLIDE CTC
SETÚBAL CTC
FARO CTC

The Beginning

New Technology With traditional systems, control centers were limited to record and control the movement of the trains. Railway stations had the effective command of the circulation.

THE RECENT PAST

With Electronical Signaling were born first CTC

For the first time we can command traffic from a Command Centre and not just control

First CTC (Pampilhosa) was born in 1995, and commands all Beira Alta line

Traffic Management

In Portugal CTC were born

- Only as a modernisation and investment opportunities
- Developed from an exclusively engineering point of view with no focus on clients
- As stand alone projects, independent of one another
 - √ hard to adapt to new situations,
 - ✓ limited in its expansion capability

They become disarticulated and incoherent for integrated rail network operation

And they revealed a lack of effective command in case of problems

2004 - WHAT TO DO ?

STRATEGIC PLAN

STRATEGIC PLAN

No longer the same mistakes we have done

Strategic Planning – focus in Operations and Customers needs

Adapting command to the requirements of an integrated railway operation

Integration of all functions that contribute to the availability and reliability of Infrastructure to allow a quick response of all systems

Definition of geographical boundaries and integration of all lines of Portuguese Network

Transform old CTC into real

Operational Command Centers
CCO

STRATEGIC PLAN

IMPORTANT ASPECTS

Reduction of CCO number (3)

Defining their boundaries (avoid the existence of borders between CCO in areas of mutual penetration of intense traffic flows or neighboring major traffic generators poles)

Preparation of the basic program, specifically for each CCO

Gradual implementation of CCO (integration of former CTC without breaking the continuity of provided services)

Size of rooms namely the control room

Allocation of space (to study the best allocation of space taking into account the interrelation between the different systems and their functionality)

Working conditions (It is important to take care of ergonomics, lighting, soundproofing, type of equipment, and all the features needed to improve working conditions in the CCO)

CCO - CONCEPTUAL MODEL

INTEGRATED FUNCTIONS

Traffic Supervision

Coordination and optimization of tasks to be carried by traffic operators

Daily contacts with TOC

Telecommunications

Control of telecommunications systems **Necessary for effective**

support of all

CCO functions

Train Performance Monitoring

Identification of train delays and causes.

Allocation of responsibilities

Development of Key performance indicators

Crisis Room

It brings together foreign elements in the event of serious disturbances without disruption of the control room.

It is possible to import to the crisis room all the information of the existing systems in the control room

OPERATIONAL COMMAND CENTER (CCO)

OPERATIONAL COMMAND CENTER (CCO)

- 650 Trains/day (23%)
- 592 Km of track
- 68 Workers

- 1650 Trains/day (70%)
- 1263 Km of track
- 144 Workers

- 150 Trains/day(7%)
- 691 Km of track
- 46 Workers

OPERATIONAL COMMAND CENTER (CCO)

CCO's in Portugal were pioneers of a new form of railway management Integrating in the same control room all IM functions that contributes to railway operation

CCO represents a significant modernization of the services provided by IP at the forefront of the most efficient practices for transport infrastructure management

CCO

CCO Lisboa

CCO Porto

Rodovia e Ferrovia

Juntos encurtamos distâncias.

THANK YOU

bras.coelho@infraestruturasdeportugal.pt www.infraestruturasdeportugal.pt